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Problem formulation

State equation: Consider the BSDE over [0,T ]:{
dY (t) = [A(t)Y (t) + B(t)u(t) + C (t)Z (t)]dt + Z (t)dW (t),

Y (T ) = ξ,

• A,C : [0,T ]→ Rn×n, and B : [0,T ]→ Rn×m are bounded and

deterministic functions.

• W is a standard one-dimensional (for simplicity) BM.

• The control u belongs to the space

U =
{
u : [0,T ]× Ω→ Rm | u ∈ F and E

∫ T

0
|u(t)|2dt <∞

}
.

• ξ ∈ L2
FT

(Ω;Rn).
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Quadratic performance functional:

J(ξ; u) = E
[
〈GY (0),Y (0)〉+

∫ T

0

〈Q(t) S>1 (t) S>2 (t)

S1(t) R11(t) R12(t)

S2(t) R21(t) R22(t)

Y (t)

Z(t)

u(t)

,
Y (t)

Z(t)

u(t)

〉dt],

• The weighting matrices are bounded and deterministic, G andQ(t) S>1 (t) S>2 (t)

S1(t) R11(t) R12(t)

S2(t) R21(t) R22(t)


are symmetric, not required to be positive definite (semidefinite).

Problem (BSLQ). For a given terminal state ξ ∈ L2
FT

(Ω;Rn), find a

control u∗ ∈ U such that

J(ξ; u∗) = inf
u∈U

J(ξ; u) ≡ V (ξ).
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Motivation

• The LQ optimal control problem for BSDEs was initially investigated
by Lim–Zhou (2001, SICON) in the following form: To minimize

J(ξ; u) = E
{
〈GY (0),Y (0)〉+

∫ T

0

[
〈QY ,Y 〉+ 〈NZ ,Z〉+ 〈Ru, u〉

]
dt

}
,

subject to{
dY (t) = [A(t)Y (t) + B(t)u(t) + C(t)Z(t)]dt + Z(t)dW (t),

Y (T ) = ξ,

where H,Q,N > 0, R > 0.

I No cross terms in (Y ,Z , u) appears in the cost functional.

I G ,Q,N > 0 and R > 0, standard definite problem.

• The general problem itself is interesting and challenging.

• Another motivation arises from differential game theory.
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A zero-sum Stackelberg differential game

Consider the controlled linear SDE{
dX (t) = [AX + B1u1 + B2u2]dt + [CX + D1u1 + D2u2]dW ,

X (0) = x ,

and the performance functional (cost of Player 1, gain of Player 2)

J(x ; u1, u2) = E
{〈

GX (T ),X (T )
〉

+ 2〈ξ,X (T )〉

+

∫ T

0

[
〈QX ,X 〉+ 〈R1u1, u1〉+ 〈R2u2, u2〉

]
dt

}
.

Player 2 is the leader. She announces her control u2. Player 1, the

follower, solves an LQ optimal control problem. The Riccati equation for

this LQ control problem is
Ṗ + PA + A>P + C>PC + Q

− (PB1 + C>PD1)(R + D>1 PD1)−1(B>1 P + D>1 PC ) = 0,

P(T ) = G .
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The minimum cost of Player 1 (w.r.t. u2) is

V (u2) = E
{
〈P(0)x , x〉+ 2〈η(0), x〉+

∫ T

0

[
〈(R2 + D>2 PD2)u2, u2〉

+ 2〈η,B2u2〉+ 2〈ζ,D2u2〉 − 〈(R + D>1 PD1)−1v , v〉
]
dt
}
.

where

v = B>1 η + D>1 ζ + D>1 PD2u2,

Θ = −(R + D>1 PD1)−1(B>1 P + D>1 PC ),

and (η, ζ) is the adapted solution of
dη(t) = −

{
(A + BΘ)>η + (C + DΘ)>ζ

+ [(C + DΘ)>PD2 + PB2]u2

}
dt + ζdW ,

η(T ) = ξ.
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The leader’s problem is then to choose u2 in order to minimize

J(u2) , −V (u2).

Taking a deeper look, we see the problem of Player 2 is exactly the

indefinite BSLQ problem we proposed, with cross terms in (Y ,Z , u) in

the cost functional.
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An more specific example:

Consider

max
v∈L2

F(0,1;R)
min

u∈L2
F(0,1;R)

E
{
|X (1)|2+2ξX (1)+

∫ 1

0

[
|u(t)|2−(a2+1)|v(t)|2

]
dt

}
subject to{

dX (t) = u(t)dt + [X (t) + v(t)]dW (t), t ∈ [0, 1],

X (0) = 0,

where L2
F(0, 1;R) is the space of F-progressively measurable processes

ϕ : [0, 1]× Ω→ R with E
∫ 1

0
|ϕ(t)|2dt <∞, ξ is an F1-measurable,

bounded random variable, and a > 0 is a constant.

For a given v ∈ L2
F(0, 1;R), the minimization problem is a standard

forward stochastic LQ optimal control problem.
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The minimum V (ξ; v) (depending on ξ and v):

V (ξ; v) = E
∫ 1

0

[
− |η(t)|2 + 2ζ(t)v(t)− a2|v(t)|2

]
dt,

where (η, ζ) is the adapted solution to the BSDE{
dη(t) = [η(t)− ζ(t)− v(t)]dt + ζ(t)dW (t), t ∈ [0, 1],

η(1) = ξ.

Using the transformations

Y (t) = η(t), Z (t) = ζ(t), u(t) = v(t)− 1

a2
ζ(t),

we see the maximization problem is equivalent to the BSLQ problem with

the state equationdY (t) =
[
Y (t)− a2 + 1

a2
Z (t)− u(t)

]
dt + Z (t)dW (t), t ∈ [0, 1],

Y (1) = ξ

and the cost functional

J(ξ; v) = E
∫ 1

0

[
|Y (t)|2 − 1

a2
|Z (t)|2 + a2|u(t)|2

]
dt.
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Existence of an optimal control

Theorem. For a given terminal state ξ ∈ L2
FT

(Ω;Rn), a control u∗ ∈ U

is optimal iff the following conditions hold:

(i) J(0; u) > 0 for all u ∈ U .

(ii) The adapted solution (X ∗,Y ∗,Z∗) to the decoupled FBSDE
dX ∗(t) = (−A>X ∗ + QY ∗ + S>1 Z∗ + S>2 u∗)dt

+ (−C>X ∗ + S1Y
∗ + R11Z

∗ + R12u
∗)dW ,

dY ∗(t) = (AY ∗ + Bu∗ + CZ∗)dt + Z∗dW ,

X ∗(0) = GY ∗(0), Y ∗(T ) = ξ,

satisfies

S2Y
∗ + R21Z

∗ − B>X ∗ + R22u
∗ = 0.
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Proof. u∗ ∈ U is optimal for ξ iff

J(ξ; u∗ + εu)− J(ξ; u∗) > 0, ∀u ∈ U , ∀ε ∈ R.

A straightforward computation yields

J(ξ; u∗ + εu)− J(ξ; u∗) = ε2J(0; u)

+ 2εE

[
〈GY ∗(0),Y (0)〉+

∫ T

0

〈Q S>1 S>2
S1 R11 R12

S2 R21 R22

Y ∗

Z∗

u∗

,
Y

Z

u

〉dt].
Integration by parts gives

− 〈GY ∗(0),Y (0)〉 = −〈X∗(0),Y (0)〉

= E
∫ T

0

[
〈QY ∗ + S>1 Z∗ + S>2 u∗,Y 〉

+ 〈S1Y
∗ + R11Z

∗ + R12u
∗,Z〉+ 〈B>X∗, u〉

]
dt.

Upon substitution, we get

J(ξ; u∗+ εu)− J(ξ; u∗) = ε2J(0; u) + 2εE
∫ T

0
〈S2Y

∗+R21Z
∗−B>X∗+R22u

∗, u〉dt.
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Construction of optimal controls

The natural idea: Solve for u∗ from the FBSDE
dX ∗(t) = (−A>X ∗ + QY ∗ + S>1 Z∗ + S>2 u∗)dt

+ (−C>X ∗ + S1Y
∗ + R11Z

∗ + R12u
∗)dW ,

dY ∗(t) = (AY ∗ + Bu∗ + CZ∗)dt + Z∗dW ,

X ∗(0) = GY ∗(0), Y ∗(T ) = ξ,

coupled by

S2Y
∗ + R21Z

∗ − B>X ∗ + R22u
∗ = 0.

The basic method: Decoupling by the ansatz

Y ∗(t) = −Σ(t)X ∗(t) + ϕ(t),

where Σ is a deterministic function with Σ(T ) = 0, and ϕ is stochastic

process with ϕ(T ) = ξ.
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How to decide Σ and ϕ?

Differentiating both sides of

Y ∗(t) = −Σ(t)X ∗(t) + ϕ(t),

comparing the coefficients of the drift and the diffusion, and using the

relation

S2Y
∗ + R21Z

∗ − B>X ∗ + R22u
∗ = 0

to eliminate u∗ (under certain assumptions on Σ), we will see that

I Σ satisfies a complicated ODE;

I ϕ satisfies a BSDE whose coefficients depend on Σ:{
dϕ(t) = α(t; Σ)dt + β(t)dW (t), t ∈ [0,T ],

ϕ(T ) = ξ;

I Z is linear combination of X , ϕ, and β;

I u∗ is a linear combination of X and ϕ.
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The fundamental question: Does such a Σ exists? In other words, is

the deduced ODE solvable?

Unfortunately, in the general case J(0; u) > 0, even an optimal control

exists, the decoupling method might not work!

The uniform convexity condition:

J(0; u) > δ E
∫ T

0

|u(t)|2dt, ∀u ∈ U ,

stronger than J(0; u) > 0, but not too much. It can be easily shown that

under the uniform convexity condition, an optimal control uniquely exists.
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I Does the decoupling method work in the uniform convexity case? It

has been shown by Lim–Zhou, that in the definite case, a special

uniform convexity condition, the decoupling method works. The

argument is highly dependent on the two assumptions:

I No cross terms in (Y ,Z , u) appears in the cost functional.

I H,Q,N > 0 and R > 0, standard definite problem.

I If the decoupling method works in the uniform convexity case, how

can we use the result to solve the general case J(0; u) > 0?
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Consider, for each ε > 0, the new cost functional Jε(ξ; u) defined by

Jε(ξ; u) = J(ξ; u) + εE
∫ T

0

|u(t)|2dt,

which is uniform convex when J(0; u) > 0. Suppose that we can

construct the (unique) optimal control u∗ε for Jε(ξ; u).

Theorem. For the original problem, an optimal control exists for a given

terminal state ξ iff one of the following conditions holds:

(i) the family {u∗ε}ε>0 is bounded in the Hilbert space U , i.e.,

sup
ε>0

E
∫ T

0

|u∗ε (t)|2dt <∞.

(ii) u∗ε converges weakly in U as ε→ 0;

(iii) u∗ε converges strongly in U as ε→ 0.

Whenever (i), (ii), or (iii) is satisfied, the strong (weak) limit

u∗ = limε→0 u
∗
ε is an optimal control for ξ.
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Connections with FSLQ problems

Consider the controlled linear forward SDE{
dX (t) = [A(t)X (t) + B(t)u(t) + C (t)v(t)]dt + v(t)dW (t), t ∈ [0,T ],

X (0) = x ,

and, for λ > 0, the cost functional

Jλ(x ; u, v) , E
{
λ|X (T )|2 +

∫ T

0

〈Q S>1 S>2
S1 R11 R12

S2 R21 R22

X

v

u

,
X

v

u

〉dt}.
In the above, the control is the pair

(u, v) ∈ L2
F(0,T ;Rm)× L2

F(0,T ;Rn) ≡ U × V .

Problem (FSLQ)λ. For a given initial state x ∈ Rn, find a control

(u∗, v∗) ∈ U × V such that

Jλ(x ; u∗, v∗) = inf
(u,v)∈U×V

Jλ(x ; u, v) ≡ Vλ(x).
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Recall the uniform convexity condition:

J(0; u) > δ E
∫ T

0

|u(t)|2dt, ∀u ∈ U ,

Theorem. Assume that the uniform convexity condition holds. Then

there exist constants ρ > 0 and λ0 > 0 such that for λ > λ0,

Jλ(0; u, v) > ρE
∫ T

0

[
|u(t)|2 + |v(t)|2

]
dt, ∀(u, v) ∈ U × V .

If, in addition, G = 0, then for λ > λ0,

Jλ(x ; u, v) > ρE
∫ T

0

[
|u(t)|2 + |v(t)|2

]
dt, ∀(u, v) ∈ U ×V , ∀x ∈ Rn.
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Corollary. Under the assumptions of the previous theorem, for λ > λ0,

(i) Problem (FSLQ)λ is uniquely solvable. If, in addition, G = 0, then

the value function Vλ satisfies

Vλ(x) > 0, ∀x ∈ Rn.

(ii) the Riccati equation
Ṗλ + PλA + A>Pλ + Q

−
(
C>Pλ + S1

B>Pλ + S2

)>(
R11 + Pλ R12

R21 R22

)−1(
C>Pλ + S1

B>Pλ + S2

)
= 0,

Pλ(T ) = λI ,

admits a unique solution Pλ ∈ C ([0,T ];Sn) such that(
R11 + Pλ R12

R21 R22

)
� 0.

Moreover, Vλ(x) = 〈Pλ(0)x , x〉 for all x ∈ Rn.

Remark. (ii) implies R22 � 0.
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Properties of Pλ

The Riccati equation
Ṗλ + PλA + A>Pλ + Q

−
(
C>Pλ + S1

B>Pλ + S2

)>(
R11 + Pλ R12

R21 R22

)−1(
C>Pλ + S1

B>Pλ + S2

)
= 0,

Pλ(T ) = λI ,

Recall the decoupling relation

Y ∗(t) = −Σ(t)X ∗(t) + ϕ(t).

Hope to show that

Σ(t) = lim
λ→∞

Pλ(t)−1.

I Is Pλ(t) invertible?

I Does Pλ(t)−1 converge?
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Let us temporarily assume that

G = 0, Q(t) = 0, R12(t) = R>21(t) = 0; ∀t ∈ [0,T ], (1)

i.e., the cost functional takes the form

J(ξ; u) = E
∫ T

0

〈 0 S>1 (t) S>2 (t)

S1(t) R11(t) 0

S2(t) 0 R22(t)

Y (t)

Z(t)

u(t)

,
Y (t)

Z(t)

u(t)

〉dt
= E

∫ T

0

[
2〈S1Y ,Z〉+ 2〈S2Y , u〉+ 〈R11Z ,Z〉+ 〈R22u, u〉

]
dt.

Proposition. Let (1) hold. Then for λ > λ0,

Pλ(t) > 0, ∀t ∈ [0,T ].

Moreover, for every λ2 > λ1 > λ0, we have

Pλ2 (t) > Pλ1 (t), ∀t ∈ [0,T ].
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Write for an Sn-valued function Σ : [0,T ]→ Sn,

B(t,Σ(t)) = B(t) + Σ(t)S2(t)>,

C(t,Σ(t)) = C (t) + Σ(t)S1(t)>,

R(t,Σ(t)) = I + Σ(t)R11(t).

The Riccati equation for Problem (BSLQ):
Σ̇(t)− A(t)Σ(t)− Σ(t)A(t)> + B(t,Σ(t))[R22(t)]−1B(t,Σ(t))>

+ C(t,Σ(t))[R(t,Σ(t))]−1Σ(t)C(t,Σ(t))> = 0,

Σ(T ) = 0.

Theorem. Let (1) hold. Then the above Riccati equation admits a

unique positive semidefinite solution Σ ∈ C ([0,T ];Sn) such that R(Σ) is

invertible a.e. on [0,T ] and R(Σ)−1 ∈ L∞(0,T ;Rn).
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Theorem. Let (1) hold. Let (ϕ, β) be the adapted solution to the BSDE
dϕ(t) =

{
[A− B(Σ)R−1

22 S2 − C(Σ)R(Σ)−1ΣS1]ϕ

+ C(Σ)R(Σ)−1β
}
dt + βdW (t),

ϕ(T ) = ξ.

and X the solution to the following SDE:

dX (t) =
{[

S>1 R(Σ)−1ΣC(Σ)> + S>2 R−1
22 B(Σ)> − A>

]
X

−
[
S>1 R(Σ)−1ΣS1 + S>2 R−1

22 S2

]
ϕ+ S>1 R(Σ)−1β

}
dt

−
[
R(Σ)−1

]>[C(Σ)>X − S1ϕ− R11β
]
dW (t),

X (0) = 0.

Then the optimal control of Problem (BSLQ) for the terminal state ξ is given by

u(t) = [R22(t)]−1[B(t,Σ(t))>X (t)− S2(t)ϕ(t)], t ∈ [0,T ],

and the value function of Problem (BSLQ) is given by

V (ξ) = E
∫ T

0

{
〈R11R(Σ)−1β, β〉+ 2〈S>1 R(Σ)−1β, ϕ〉

− 〈[S>1 R(Σ)−1ΣS1 + S>2 R−1
22 S2]ϕ,ϕ〉

}
dt.

28/34



Outline

1 Problem formulation

2 Existence of an optimal control

3 Construction of optimal controls

4 Connections with FSLQ problems

5 Properties of Pλ

6 Transformation

29/34



Transformation

State equation:{
dY (t) = (AY + Bu + CZ )dt + ZdW (t),

Y (T ) = ξ,

Quadratic performance functional:

J(ξ; u) = E
[
〈GY (0),Y (0)〉+

∫ T

0

〈Q S>1 S>2
S1 R11 R12

S2 R21 R22

Y

Z

u

,
Y

Z

u

〉dt],
Recall that when the uniform-convexity condition holds, R22 � 0. So we

can eliminate the crossing term in u and Z by proper transformations.
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Let
S1 = S1 − R12R

−1
22 S2, R11 = R11 − R12R

−1
22 R21,

C = C − BR−1
22 R21, v = u + R−1

22 R21Z ,

The original Problem (BSLQ) then is equivalent to the BSLQ problem

with state equation{
dY (t) = (AY + Bv + CZ )dt + ZdW (t),

Y (T ) = ξ,

and cost functional

J (ξ; v) = E
{
〈GY (0),Y (0)〉+

∫ T

0

〈Q S>1 S>2
S1 R11 0

S2 0 R22

Y

Z

v

,
Y

Z

v

〉dt}.
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Furthermore, let H ∈ C ([0,T ];Sn) be the solution to the ODE{
Ḣ(t) + H(t)A(t) + A(t)>H(t) + Q(t) = 0, t ∈ [0,T ],

H(0) = G ,

Apply the integration by parts formula to t 7→ 〈H(t)Y (t),Y (t)〉:

E〈H(T )ξ, ξ〉 − E〈GY (0),Y (0)〉

= E
∫ T

0

〈 −Q HC HB

C>H H 0

B>H 0 0

Y

Z

v

 ,

Y

Z

v

〉dt.
Substituting for E〈GY (0),Y (0)〉 in J (ξ; v) yields

J (ξ; v) = E
∫ T

0

〈 0 (SH
1 )> (SH

2 )>

SH
1 RH

11 0

SH
2 0 R22


Y

Z

v

,
Y

Z

v

〉dt − E〈H(T )ξ, ξ〉,

where

SH
1 = S1 + C>H, SH

2 = S2 + B>H, RH
11 = R11 + H.
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Thus, for a given terminal state ξ,the original problem is equivalent to

minimizing the cost functional

JH (ξ; v) = E
∫ T

0

〈 0 (SH
1 )> (SH

2 )>

SH
1 RH

11 0

SH
2 0 R22

Y

Z

v

,
Y

Z

v

〉dt,
subject to the state equation{

dY (t) = (AY + Bv + CZ )dt + ZdW (t),

Y (T ) = ξ.

Remark. For BSLQ problems, the presence of crossing terms in (Y ,Z ),

(Y , u) is essential.
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